Menofia University	Subject: Advanced Quantum	
Faculty of Engineering Shebien El-kom	Mechanics (1)	
Basic Engineering Sci. Department.	Code: BES 706	
Academic Year: 2016-2017	Time Allowed: 3 hours	
Date $: 31 / 5 / 2017$		Year : Master
		Total Marks: 100 Marks

Answer all the following questions: [100 Marks]

| Q. 1 | (A) Define Quantum mechanics and some applications on it? [25] |
| :--- | :--- | :--- |

(B) By using Lagrangian formulation find:
i) Equations of motion
ii) Momentum equation
iii) Force equation
(C) Derive Hamiltonian formulation from Lagrangian formulation then find the total variation of the Hamiltonian
Q. 2 (A) Define Bloch-Floquet Waves? [25]
(B) The wave propagating periodic structure as shown Figure (1). By using $\varphi(k \cdot x)=e^{i k x} u_{p}(x)$, find the solution of this wave.

V(a)
Figure 1: A 1D periodic structure of a potential profile for $V(x)$ where a BlochFloquet wave can travel on it.

Q3 A non-relativistic particle of mass m is held in a circular orbit around the [25] origin by an attractive force $f(r)=-k r$ where k is a positive constant
i) Show that the potential energy can be written

$$
U(r)=\frac{1}{2} k r^{2}
$$

Assuming $U(r)=0$ when $r=0$
ii)Assuming the Bohr quantization of the angular momentum of the particle, show that the radius r of the orbit of the particle and speed v of the particle can be written

$$
v^{2}=\left(\frac{n \hbar}{m}\right)\left(\frac{k}{m}\right)^{0.5}, \quad r^{2}=\left(\frac{n \hbar}{k}\right)\left(\frac{k}{m}\right)^{0.5},
$$

where n is an integer
iii) Hence, show that the total energy of the particle is

$$
E_{n}=n \hbar\left(\frac{k}{m}\right)^{0.5}
$$

iv) If $m=3 \times 10^{-26} \mathrm{~kg}$ and $k=1180 \mathrm{~N} \mathrm{~m}^{-1}$, determine the wavelength of the photon in nm which will cause a transition between successive energy levels.

Q4 Consider the time-independent Schrodinger equation in three dimensions
i) Write $\Psi(r . \theta, \emptyset)=\Psi_{r}(r) Y(\theta, \emptyset)$ as a separable solution and split Schrodinger's equation into two independent differential equations, one depending on r and the other depending on θ and ϕ.
ii) Further separate the angular equation into θ and ϕ parts
iii) Combine the angular part and the potential part of the radial equation and write them as an effective potential V_{e}. Then make the substitution $\chi(r)=r \Psi_{r}(r)$ and transform the radial equation into a form that resembles the one-dimensional Schrodinger equation.

This exam measures the following ILOs								
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c
	Q4-b				Q2-b	Q2-c	Q3-c	
	Knowledge \&understanding skills				Intellectual Skills		Professional Skills	

